Rabu, 27 Juni 2018

Sikap Menumbuhkan Semangat Juang Dalam Belajar

0 komentar

Sikap Menumbuhkan Semangat Juang Dalam Belajar



Setiap orang yang sedang menuntut ilmu pasti tidak lepas dari yang namanya belajar. Belajar dimulai dari kita kecil bahkan sampai kita dewasa, tidak ada kata putus dengan yang namanya belajar. Belajar bisa dilakukan dimana saja tidak hanya di sekolah melaikan di luar sekolah seperti rumah, lingkungan, alam dan masih banyak lagi yang lainnya. Orang yang selalu belajar pasti akan selalu mendapakan ilmu yang lebih dan lebih dibandingkan dengan orang yang jarang belajar. Apasih yang dapat kita ambil dari belajar? Jelas banyak, dari belajar apa yang awalnya kita tidak tahu menjadi tahu dan apa yang awalnya kita tidak pahami menjadi paham setelah belajar.

Namun saat kita terus menurus belajar seringkali kita pasti merasakan yang namanya rasa jenuh, itu wajar. Tidak ada orang yang sanggup belajar terus menurus di sepanjang hidupnya, pasti ada suatu titik dimana mereka mengalami kejenuhan dalam belajar, begitupun dengan saya. Bagaimana cara mengatasi rasa jenuh yang datang saat kita ingin belajar? Bagaimana cara menumbuhkan semangat kita kembali dalam belajar jika rasa jenuh itu datang? Setiap orang mungkin memiliki cara yang berbeda dalam mengatasi masalah tersebut. Begitupula dengan saya, ada beberapa hal yang biasanya saya lakukan jika saya mengalami hal tersebut. Jika rasa jenuh saya dalam belajar datang maka hal yang saya lakukan untuk menumbuhkan semangat dalam belajar yaitu dengan

1.   Memotivasi diri

Hal pertama yang dilakukan yaitu memotivasi diri, meyakinka diri sendiri bahwa saya bisa melakukan apa yang orang lain lakukan. Tidak menyerah apalagi putus asa, memperkuat diri sendiri untuk dapat mencapai apa yang diinginkan dengan tidak membuang-buang waktu.

2.   Mengingat tujuan yang akan di capai

Mengingat tujuan yang akan dicapai dapat menumbuahkan semangat belajar, jika kita merasa jenuh dalam belajar ingatlah apa yang akan kita dapatkan nanti dari usaha kita selama ini, ingatlah arah awal dan tujuan kita belajar itu untuk apa.

3.   Mengingat perjuangan orang tua

Ingatlah perjuangan orang-orang yang sayang terhadap kita dan orang-orang yang kita sayangi terutama orang tua, jika rasa jenuh dalam belajar datang menurut saya hal yang paling penting untuk menambah semangat dalam belajar adalah mengingat perjuangan orangtua kita, perjuangan yang telah bersusah payah berusaha agar anaknya dapat menjadi yang lebih baik dari mereka. Maka hal ini adalah hal yang paling ampuh dalam menumbuhkan semangat juang dalam belajar.

4.   Berfikir positif

Selalu berfikir positif juga merupakan cara menumbuhkan semgat juang dalam belajar. Fikirlah hal-hal yang baik jika kita hendak belajar, agar rasa jenuh itu dapat teratasi dengan baik.

5.   Niatkan dalam hati

Niat, jika kita ingin menumbuhkan rasa semangat belajar tanpa niat saya rasa itu hanya buang-buang waktu saja, bahkan nanti rasa jenuh itu akan kembali lagi. Maka dari itu niatkan dalam hati yang paling dalam supaya rasa semangat juang dalam belajar menjadi bangkit kembali.

Demikianlah hal-hal yang biasa saya lakukan untuk menumbuhkan rasa semangat juang saya dalam belajar jika rasa jenuh datang. Mungkin hal-hal ini dapat di terapkan oleh sebagian dari kalian agar kalian juga dapat semangat dalam belajar. Buatlah belajar menjadi hal yang semenyenangkan mungkin agar saat kalian belajar tidak merasa bosan dan jenuh.


Selasa, 26 Juni 2018

KOMPUTASI DAN PARALLEL PROCESSING

0 komentar

POKOK PEMBAHASAN TUGAS



1.   Pengertian Komputasi

Komputasi sebetulnya bisa diartikan sebagai cara untuk menemukan pemecahan masalah dari data input dengan menggunakan suatu algoritma. Hal ini ialah apa yang disebut dengan teori komputasi, suatu sub-bidang dari ilmu komputer dan matematika. Selama ribuan tahun, perhitungan dan komputasi umumnya dilakukan dengan menggunakan pena dan kertas, atau kapur dan batu tulis, atau dikerjakan secara mental, kadang-kadang dengan bantuan suatu tabel. Namun sekarang, kebanyakan komputasi telah dilakukan dengan menggunakan komputer.

Secara umum iIlmu komputasi adalah bidang ilmu yang mempunyai perhatian pada penyusunan model matematika dan teknik penyelesaian numerik serta penggunaan komputer untuk menganalisis dan memecahkan masalah-masalah ilmu (sains). Dalam penggunaan praktis, biasanya berupa penerapan simulasi komputer atau berbagai bentuk komputasi lainnya untuk menyelesaikan masalah-masalah dalam berbagai bidang keilmuan, tetapi dalam perkembangannya digunakan juga untuk menemukan prinsip-prinsip baru yang mendasar dalam ilmu.

Bidang ini berbeda dengan ilmu komputer (computer science), yang mengkaji komputasi, komputer dan pemrosesan informasi. Bidang ini juga berbeda dengan teori dan percobaan sebagai bentuk tradisional dari ilmu dan kerja keilmuan. Dalam ilmu alam, pendekatan ilmu komputasi dapat memberikan berbagai pemahaman baru, melalui penerapan model-model matematika dalam program komputer berdasarkan landasan teori yang telah berkembang, untuk menyelesaikan masalah-masalah nyata dalam ilmu tersebut.





Kelahiran

Ilmu atau sains berdasarkan obyek kajiannya dibedakan antara Fisika, Kimia, Biologi dan Geologi. Ilmu dapat pula digolongkan berdasarkan metodologi dominan yang digunakannya, yaitu ilmu pengamatan/percobaan (observational/experimental science), ilmu teori (theoretical science) dan ilmu komputasi (computational science). Yang terakhir ini bisa dianggap bentuk yang paling baru yang muncul bersamaan dengan perkembangan kekuatan pemrosesan dalam komputer dan perkembangan teknik-teknik metode numerik dan metode komputasi lainnya.

Dalam ilmu (sains) tradisional seperti Fisika, Kimia dan Biologi, penggolongan ilmu berdasarkan metodologi dominannya juga mewujud, yang ditunjukkan dengan munculnya bidang-bidang khusus berdasarkan penggolongan tsb. lengkap dengan jurnal-jurnal yang relevan untuk melaporkan hasil-hasil penelitiannya. Sebagai contoh dalam kimia, melengkapi kimia percobaan (experimental chemistry) dan kimia teori (theoretical chemistry), berkembang pula kimia komputasi (computational chemistry), seperti juga di bidang Biologi dikenal Biologi Teori (theoretical biology) serta Biologi Komputasi (computational biology), lengkap dengan jurnalnya seperti Journal of Computational Chemistry dan Journal of Computational Biology. Cara penggolongan yang digunakan berbeda dengan cara penggolongan lain berdasarkan obyek kajian, seperti penggolongan kimia atas Kimia Organik, Kimia Anorganik, dan Biokimia.

Walaupun dengan titik pandang yang berbeda, ilmu komputasi sebagai bentuk ketiga dari ilmu (sains) telah banyak disampaikan oleh berbagai pihak, antara lain Stephen Wolfram dengan bukunya yang terkenal: A New Kind of Science, dan Jürgen Schmidhuber.







Komputasi sains

Komputasi sains merupakan salah satu cabang ilmu komputasi. Secara umum komputasi sains mengkaji aspek-aspek komputasi untuk aplikasi / memecahkan masalah di bidang sains lain, seperti fisika, kimia, biologi dan lain-lain.

Di Indonesia sudah banyak pertemuan atau kegiatan ilmiah terkait dengan komputasi, tetapi umumnya lebih terkait dengan aspek teknologi informasi. Sedangkan kajian di komputasi sains masih sangat kurang. Hal ini tidak mengherankan karena komputasi sains lebih condong sebagai kajian teori murni, sehingga komunitasnya masih sangat terbatas seperti halnya fisika teori. Hanya ada satu kegiatan ilmiah yang terkait langsung dan fokus pada kajian komputasi sains, yaitu Workshop on Computational Science yang diadakan rutin setiap tahun oleh konsorsium yang tergabung dalam Masyarakat Komputasi Indonesia.



2.   Pengertian Parallel Processing

Pemrosesan paralel (parallel processing) adalah penggunakan lebih dari satu CPU untuk menjalankan sebuah program secara simultan. Idealnya, parallel processing membuat program berjalan lebih cepat karena semakin banyak CPU yang digunakan. Tetapi dalam praktek, seringkali sulit membagi program sehingga dapat dieksekusi oleh CPU yang berbea-beda tanpa berkaitan di antaranya.



Komputasi paralel adalah salah satu teknik melakukan komputasi secara bersamaan dengan memanfaatkan beberapa komputer secara bersamaan. Biasanyadiperlukan saat kapasitas yang diperlukan sangat besar, baik karena harus mengolah data dalam jumlah besar ataupun karena tuntutan proses komputasi yang banyak. Untuk melakukan aneka jenis komputasi paralel ini diperlukan infrastruktur mesin paralel yang terdiri dari banyak komputer yang dihubungkan dengan jaringan dan mampu bekerja secara paralel untuk menyelesaikan satu masalah. Untuk itu diperlukan aneka perangkat lunak pendukung yang biasa disebut sebagai middleware yang berperan untuk mengatur distribusi pekerjaan antar node dalam satu mesin paralel. Selanjutnya pemakai harus membuat pemrograman paralel untuk merealisasikan komputasi.



Pemrograman paralel adalah teknik pemrograman komputer yang memungkinkan eksekusi perintah/operasi secara bersamaan baik dalam komputer dengan satu (prosesor tunggal) ataupun banyak (prosesor ganda dengan mesin paralel) CPU. Tujuan utama dari pemrograman paralel adalah untuk meningkatkan performa komputasi. Semakin banyak hal yang bisa dilakukan secara bersamaan (dalam waktu yang sama), semakin banyak pekerjaan yang bisa diselesaikan.

Komputasi paralel membutuhkan:

· algoritma

· bahasa pemrograman

· compiler

Sebagai besar komputer hanya mempunyai satu CPU, namun ada yang mempunyai lebih dari satu. Bahkan juga ada komputer dengan ribuan CPU. Komputer dengan satu CPU dapat melakukan parallel processing dengan menghubungkannya dengan komputer lain pada jaringan. Namun, parallel processing ini memerlukan software canggih yang disebut distributed processing software.

Parallel processing berbeda dengan multitasking, yaitu satu CPU mengeksekusi beberapa program sekaligus. Parallel processing disebut juga parallel computing.

Contoh struktur pengiriman permintaan dan jawaban dari parallel processing

Aristektur Komputer Parallel

Taksonomi Flynn dan model pemrosesan parallel, keempat kelompok komputer tersebut adalah :

1. Komputer SISD (Single Instruction stream-Single Data stream)

Pada komputer jenis ini semua instruksi dikerjakan terurut satu demi satu, tetapi juga dimungkinkan adanya overlapping dalam eksekusi setiap bagian instruksi (pipelining). Pada umumnya komputer SISD berupa komputer yang terdiri atas satu buah pemroses (single processor). Namun komputer SISD juga mungkin memiliki lebih dari satu unit fungsional (modul memori, unit pemroses, dan lain-lain), selama seluruh unit fungsional tersebut berada dalam kendali sebuah unit pengendali.

2. Komputer SIMD (Single Instruction stream-Multiple Data stream)

Pada komputer SIMD terdapat lebih dari satu elemen pemrosesan yang dikendalikan oleh sebuah unit pengendali yang sama. Seluruh elemen pemrosesan menerima dan menjalankan instruksi yang sama yang dikirimkan unit pengendali, namun melakukan operasi terhadap himpunan data yang berbeda yang berasal dari aliran data yang berbeda pula

3. Komputer MISD (Multiple Instruction stream-Single Data stream)

Komputer jenis ini memiliki n unit pemroses yang masing-masing menerima dan mengoperasikan instruksi yang berbeda terhadap aliran data yang sama, dikarenakan setiap unit pemroses memiliki unit pengendali yang berbeda. Keluaran dari satu pemroses menjadi masukan bagi pemroses berikutnya. Belum ada perwujudan nyata dari komputer jenis ini kecuali dalam bentuk prototipe untuk penelitian.

4. Komputer MIMD (Multiple Instruction stream-Multiple Data stream)

Pada sistem komputer MIMD murni terdapat interaksi di antara n pemroses. Hal ini disebabkan seluruh aliran dari dan ke memori berasal dari space data yang sama bagi semua pemroses. Komputer MIMD bersifat tightly coupled jika tingkat interaksi antara pemroses tinggi dan disebut loosely coupled jika tingkat interaksi antara pemroses rendah.



Paralel prosessing komputasi adalah proses atau pekerjaan komputasi di komputer dengan memakai suatu bahasa pemrograman yang dijalankan secara paralel pada saat bersamaan. Secara umum komputasi paralel diperlukan untuk meningkatkan kecepatan komputasi bila dibandingkan dengan pemakaian komputasi pada komputer tunggal.



Message Passing Interface (MPI).

MPI adalah sebuah standard pemrograman yang memungkinkan pemrogram untuk membuat sebuah aplikasi yang dapat dijalankan secara paralel. Proses yang dijalankan oleh sebuah aplikasi dapat dibagi untuk dikirimkan ke masing – masing compute node yang kemudian masing – masing compute node tersebut mengolah dan mengembalikan hasilnya ke komputer head node. Untuk merancang aplikasi paralel tentu membutuhkan banyak pertimbangan – pertimbangan diantaranya adalah latensi dari jaringan dan lama sebuah tugas dieksekusi oleh prosesor.

MPI ini merupakan standard yang dikembangkan untuk membuat aplikasi pengirim pesan secara portable. Sebuah komputasi paralel terdiri dari sejumlah proses, dimana masing-masing bekerja pada beberapa data lokal. Setiap proses mempunyai variabel lokal, dan tidak ada mekanisme suatu proses yang bisa mengakses secara langsung memori yang lain. Pembagian data antar proses dilakukan dengan message passing, yaitu dengan mengirim dan menerima pesan antar proses.

MPI menyediakan fungsi-fungsi untuk menukarkan antar pesan. Kegunaan MPI yang lain adalah

1. menulis kode paralel secara portable,

2. mendapatkan performa yang tinggi dalam pemrograman paralel, dan

3. menghadapi permasalahan yang melibatkan hubungan data irregular atau dinamis yang tidak begitu cocok dengan model data paralel.

PVM (Parallel Virtual Machine)

PVM adalah paket software yang mendukung pengiriman pesan untuk komputasi parallel antar komputer. PVM dapat berjalan diberbagai macam variasi UNIX atau pun windows dan telah portable untuk banyak arsitektur seperti PC, workstation, multiprocessor dan superkomputer.

Sistem PVM terbagi menjadi dua. Pertama adalah daemon, pvmd, yang berjalan pada mesin virtual masing-masing komputer. Mesin virtual akan dibuat, ketika User mengeksekusi aplikasi PVM. PVM dapat dieksekusi melalui prompt UNIX disemua host. Bagian kedua adalah library interface rutin yang mempunyai banyak fungsi untuk komunikasi antar task . Library ini berisikan rutin yang dapat dipanggil untuk pengiriman pesan, membuat proses baru, koordinasi task dan konfigurasi mesin virtual.

Salah aturan main yang penting dalam PVM adalah adanya mekanisme program master dan slave/worker. Programmer harus membuat Kode master yang menjadi koordinator proses dan Kode slave yang menerima, menjalankan, dan mengembalikan hasil proses ke komputer master. Kode master dieksekusi paling awal dan kemudian melahirkan proses lain dari kode master. Masing-masing program ditulis menggunakan C atau Fortran dan dikompilasi dimasing-masing komputer. Jika arsitektur komputer untuk komputasi paralel semua sama, (misalnya pentium 4 semua), maka program cukup dikompilasi pada satu komputer saja. Selanjutnya hasil kompilasi didistribusikan kekomputer lain yang akan menjadi node komputasi parallel. Program master hanya berada pada satu node sedangkan program slave berada pada semua node.

Komunikasi dapat berlangsung bila masing-masing komputer mempunyai hak akses ke filesystem semua komputer. Akses kefile system dilakukan melalui protokol rsh yang berjalan di unix atau windows. Berikut adalah langkah pengaturan pada masing-masing komputer :

1. Buat file hostfile yang berisi daftar node komputer dan nama user yang akan dipakai untuk komputasi parallel. Bila nama user pada semua komputer sama misalnya nama user riset pada komputer C1, C2,C3 dan C4, maka hostfile ini boleh tidak ada. Hostfile ini dapat digunakan bila nama user di masing-masing komputer berbeda.

2. Daftarkan IP masing-masing komputer pada file /etc/hosts/hosts.allow dan /etc/hosts/hosts.equiv.

3. Penambahan dan penghapusan host secara dinamis dapat dilakukan melalui konsole PVM. Bila IP tidak didefinisikan pada hostfile¸ cara ini dapat digunakan.

Program PVM terdiri dari master dan slave, dimana program master dieksekusi paling awal dan kemudian melahirkan proses lain. PVM memanggil rutin pvm_spawn() untuk melahirkan satu atau dua proses lebih yang sama. Fungsi-fungsi untuk PVM versi bahasa C mempunyai rutin awalan pvm. Pengiriman dan penerimaan task diidentifikasi dengan TID (Task Identifier). TID ini bersifat unik dan digenerate oleh pvmd lokal. PVM berisi beberapa rutine yang mengembalikan nilai TID sehingga aplikasi user dapat mengidentifikasi task lain disistem.

Secara umum, langkah implementasi komputasi parallel sebagai berikut :

1. Jalankan PVM daemon pada setiap mesin dalam cluster

2. Jalankan program master pada master daemon

3. Master daemon akan menjalankan proses slave.



3.   Hubungan Antara Komputasi Dengan Parallel Processing

Komputasi Paralel merupakan teknik untuk melakukan komputasi secara bersamaan dengan memanfaatkan beberapa komputer yang independen secara bersamaan. Biasanya digunakan untuk kapasitas yang pengolahan data yang sangat besar (lingkungan industri, bioinformatika dll) atau karena tuntutan komputasi yang banyak. Pada kasus yang kedua biasanya ditemukannya kalkulasi numerik untuk menyelesaikan persamaan matematis di bidang fisika (fisika komputasi), kimia (kimai komputasi) dll. Untuk melakukan berbagai jenis komputasi paralel diperlukan infrastruktur mesin paralel yang terdiri dari banyak komputer yang nantinya dihubungkan dengan jaringan dan mampu bekerja secara paralel untuk menyelesaikan suatu masalah. Untuk itu maka digunakannya perangkat lunak pendukung yang biasa disebut middleware yang berperan untuk mengatur distribusi antar titik dalam satu mesin paralel. Selanjutnya pemakai harus membuat pemrograman paralel untuk merealisasikan komputasi. Salah satu middleware yang asli dikembangkan di Indonesia adalah OpenPC yang dipelopori oleh GFTK LIPI dan diimplementasikan di LIPI Public Center.

Komputasi paralel berbeda dengan multitasking. Multitasking itu sendiri adalah komputer dengan processor tunggal yang dapat mengeksekusi beberapa tugas secara bersamaan. Sedangkan komputasi paralel menggunakan beberapa processor atau komputer. Selain itu komputasi paralel tidak menggunakan arsitektur Von Neumann. Untuk lebih memperjelas lebih dalam mengenai perbedaan komputasi tunggal (menggunakan 1 processor) dengan komputasi paralel (menggunakan beberapa processor), maka kita harus mengetahui 4 model komputasi yang digunakan, yaitu:

·         SI SD

·         SIMD

·         MISD

·         MIMD



SISD

Merupakan singkatan dari Single Instruction, Single Data yaitu satu-satunya yang menggunakan arsitektur Von Neumann, karena pada model ini hanya menggunakan 1 processor saja. Oleh karena itu model ini dikatakan sebagai model untuk komputasi tunggal. Sedangkan ketiga model lainnya merupakan komputasi paralel yang menggunakan beberapa processor. Beberapa contoh komputer yang menggunakan model SISD adalah UNIVAC1, IBM 360, CDC 7600, Cray 1 dan PDP 1.



SIMD

Merupakan singkatan dari Single Instruction, Multiple Data. Model ini menggunakan banyak processor dengan instruksi yang sama, namun dengan data yang berbeda. Sebagai contoh kita ingin mencari angka 27 pada deretan angka yang terdiri dari 100 angka, dan kita menggunakan 5 processor. Pada setiap processor kita menggunakan algoritma atau perintah yang sama, namun data yang diproses berbeda. Misalnya processor 1 mengolah data dari deretan / urutan pertama hingga urutan ke 20, processor 2 mengolah data dari urutan 21 sampai urutan 40, begitu pun untuk processor-processor yang lain. Beberapa contoh komputer yang menggunakan model SIMD adalah ILLIAC IV, MasPar, Cray X-MP, Cray Y-MP, Thingking Machine CM-2 dan Cell Processor (GPU).



MISD
Merupakan singkatan dari Multiple Instruction, Single Data. MISD menggunakan banyak processor dengan instruksi yang berbeda namun mengolah data yang sama. Hal ini merupakan kebalikan dari model SIMD. Sebagai contoh, dengan menggunakan kasus yang sama pada contoh model SIMD namun cara untuk menyelesaikannya yang berbeda. Pada MISD jika pada komputer pertama, kedua, ketiga, keempat dan kelima sama-sama mengolah data dari urutan 1-100, namun algoritma yang digunakan untuk teknik pencariannya berbeda di setiap processor. Sampai saat ini belum ada komputer yang menggunakan model MISD.



MIMD
Pada Multiple Instruction, Multiple Data biasanya menggunakan banyak processor dengan setiap processor memiliki instruksi yang berbeda dan mengolah data yang berbeda. Namun banyak komputer yang menggunakan model MIMD juga memasukkan komponen untuk model SIMD. Beberapa komputer yang menggunakan model MIMD adalah IBM POWER5, HP/Compaq AlphaServer, Intel IA32, AMD Opteron, Cray XT3 dan IBM BG/L.



Singkatnya untuk perbedaan antara komputasi tunggal dengan komputasi paralel, bisa digambarkan pada gambar di bawah ini:



Penyelesaian Sebuah Masalah pada Komputasi Tunggal




Penyelesaian Sebuah Masalah pada Komputasi Paralel

Dari perbedaan kedua gambar di atas, dapat kita simpulkan bahwa kinerja komputasi paralel lebih efektif dan dapat menghemat waktu untuk pemrosesan data yang banyak daripada komputasi tunggal.



4.   Kesimpulan

Banyak perkembangan-perkembangan baru dalam arsitektur komputer yang didasarkan pada konsep pemrosesan paralel. Pemrosesan paralel dalam sebuah komputer dapat didefinisikan sebagai pelaksanaan instruksi-instruksi secara bersamaan waktunya. Hal ini dapat menyebabkan pelaksanaan kejadian-kejadian dalam interval waktu yang sama, dalam waktu yang bersamaan atau dalam rentang waktu yang saling tumpang tindih

        Sekalipun didukung oleh teknologi prosesor yang berkembang sangat pesat, komputer sekuensial tetap akan mengalami keterbatasan dalam hal kecepatan pemrosesannya. Hal ini menyebabkan lahirnya konsep keparalelan (parallelism) untuk menangani masalah dan aplikasi yang membutuhkan kecepatan pemrosesan yang sangat tinggi, seperti misalnya prakiraan cuaca, simulasi pada reaksi kimia, perhitungan aerodinamika dan lain-lain.

        Konsep keparalelan itu sendiri dapat ditinjau dari aspek design mesin paralel, perkembangan bahasa pemrograman paralel atau dari aspek pembangunan dan analisis algoritma paralel. Algoritma paralel itu sendiri lebih banyak difokuskan kepada algoritma untuk menyelesaikan masalah numerik, karena masalah numerik merupakan salah satu masalah yang memerlukan kecepatan komputasi yang sangat tinggi.



Daftar Pustaka








Rabu, 25 April 2018

BERFIKIR POSITIF DALAM MENUMBUHKAN SEMANGAT BELAJAR

0 komentar

SELALU BERFIKIR POSITIF DALAM MENUMBUHKAN SEMANGAT BELAJAR



Belajar, mungkin kita sudah tidak asing lagi mendengar kata itu. Kata yang selalu kita dengar dari masa kecil bahkan sampai dewasa. Untuk sebagian besar orang mungkin sudah terbiasa dengan yang namanya belajar bahkan itu sudah menjadi kebiasaan yang melekat pada diri mereka. Namun ada juga sebagian orang yang tidak terbiasa dengan yang namanya belajar, ada saja alasan yang mereka gunakan untuk menjauhkan diri dari yang namanya belajar. Padahal belajar adalah suatu hal yang penting agar kita lebih memahami dan menguasai hal-hal yang belum pernah kita ketahui sebelumnya.

Pada saat ini mungkin kebanyakan orang lebih tertarik dengan gadget di bandingkan dengan belajar. Mengapa demikian? Mungkin karena zaman teknologi sudah semakin maju, banyak hal-hal yang lebih menarik yang dapat di jumpai dalam gadget mereka (seperti halnya game) dari pada belajar. Tentu hal seperti ini harus di hilangkan, kita harus menumbuhkan rasa semangat kita dalam belajar. Setiap orang mungkin berbeda cara dalam menumbuhkan semangat belajar mereka masing-masing, ada yang harus melihat temannya sukses dan berhasil dahulu baru mereka semangat belajar, ada yang karena dapat hasil yang buruk dahulu sebelumnya baru mereka berusaha untuk memperbaikinya lagi dengan semangat belajar dan ada juga yang merasa dirinya harus bersaing agar tidak di kalahkan dengan orang lain maka harus semangat dalam belajar.

Bagi saya belajar adalah hal yang penting, namun ada saja hal-hal yang membuat saya malas untuk belajar, entah itu godaan dari teman atau bahkan yang lainnya. Jika sudah seperti ini terkadang saya berfikir bagaimana agar saya lebih semangat lagi dalam belajar dan biasanya saya melakukan hal-hal seperti berikut agar saya menjadi semagat dalam belajar:

1.    Niat

Menurut saya niat adalah hal yang paling penting dalam menumbuhkan semangat belajar, karena kalau tidak ada niat maka sekeras apapun kita mencoba pasti akan sia-sia.





2.    Membuat target yang ingin di capai

Jika kita ingin semangat belajar maka sebaiknya kita membuat target yang akan kita capai dari apa yang kita lakukan, agar kita dapat lebih termotivasi lagi dalam belajar.

3.    Atur waktu belajar

Sebaiknya atur waktu belajar yang baik agar waktu belajar kita lebih efektif dan terstruktur. Luangkan waktu kita untuk belajar max sejam agar kita tidak merasa jenuh dan bosan dalam belajar.

4.    Fokus

Saat belajar hal yang paling sulit di lakukan adalah fokus, ada saja gangguan yang dating jika kita sedang belajar. Untuk itu cobalah untuk fokus dalam belajar sebentar saja agar pelajaran yang kita pelajari terserap dengan baik.

5.    Jauhi Gangguan

Terkadang saat belajar banyak gangguan-gangguan yang sering muncul yang membuat kita malas untuk belajar, maka dari itu jauhilah segala macam gangguan yang akan terjadi jika kita hendak belajar, biasanya dalam hal ini saya akan menjauhkan handphone agar tidak mengganggu saya dalam belajar.

6.    Belajar bersama

Menurut saya belajar bersama merupakan cara belajar yang paling efektif dan sering saya lakukan jika saya merasa malas untuk belajar, karena saat belajar bersama kita bisa saling bertukar pikiran dan bertanya hal-hal yang tidak kita pahami kepada teman-teman kita.

Demikianlah hal-hal yang saya lakukan agar saya semangat dan fokus dalam belajar jika saya mengalami gangguan dan malas untuk belajar. Mungkin hal-hal ini dapat di terapkan oleh sebagian dari kalian agar kalian juga dapat semangat dalam belajar. Buatlah belajar menjadi hal yang semenyenangkan mungkin agar saat kalian belajar tidak merasa bosan dan jenuh.




Sejarah Komputasi Modern Tentang Perkembangan Prosesor

0 komentar

POKOK PEMBAHASAN TUGAS



1.   Definisi Komputasi Modern

Komputasi modern adalah sebuah konsep sistem yang menerima instruksi-isntruksi dan menyimpannya dalam sebuah memori, memori disini bisa juga dari memori komputer. Oleh karena pada saat ini kita melakukan komputasi menggunakan komputer maka bisa dibilang komputer merupakan sebuah komputasi modern. Konsep ini pertama kali digagas oleh John Von Neumann (1903-1957). Ia adalah ilmuan yang meletakkan dasar-dasar komputer modern.

Von Neumann telah menjadi ilmuwan besar di abad 21. Von Neumann memberikan berbagai sumbangsih dalam bidang matematika, teori kuantum, game theory, fisika nuklir, dan ilmu komputer yang di salurkan melalui karya-karyanya . Beliau juga merupakan salah satu ilmuwan yang terkait dalam pembuatan bom atom di Los Alamos pada Perang Dunia II lalu. Kegeniusannya dalam matematika telah terlihat semenjak kecil dengan mampu melakukan pembagian bilangan delapan digit (angka) di dalam kepalanya.



2.   Sejarah Komputasi Modern Tentang Perkembangan Prosesor

a.   RAM Statis



          Dimulai pada tahun 1969, Intel mengumumkan produk pertamanya, RAM statis 1101, metal oxide semiconductor (MOS) pertama di dunia. Ia memberikan sinyal pada berakhirnya era memori magnetis.

          Selanjutnya dikembangkan lagi pada tahun 1971 munculah microprocessor pertama Intel, microprocessor 4004 ini digunakan pada mesin kalkulator Busicom. Dengan penemuan ini maka terbukalah jalan untuk memasukkan kecerdasan buatan pada benda mati.

          Lanjut ke tahun 1972 munculah microprocessor 8008 yang berkekuatan 2 kali lipat dari pendahulunya yaitu 4004. Pada tahun 1974, 8080 Microprocessor Menjadi otak dari sebuah komputer yang bernama Altair, pada saat itu terjual sekitar sepuluh ribu dalam 1 bulan.

          Setelah itu di tahun 1978, 8086-8088 Microprocessor menjadi sebuah penjualan penting dalam divisi komputer terjadi pada produk untuk komputer pribadi buatan IBM yang memakai prosesor 8088 yang berhasil mendongkrak nama intel.

          Terakhir pada tahun 1982, Intel 286 Microprocessor atau yang lebih dikenal dengan nama 80286 adalah sebuah processor yang pertama kali dapat mengenali dan menggunakan software yang digunakan untuk processor sebelumnya.

b.   Microprocessor



Perkembangan Intel berlanjut pada tahun 1985, Intel386™ Microprocessor. Intel 386 adalah sebuah prosesor yang memiliki 275.000 transistor yang tertanam diprosessor tersebut yang jika dibandingkan dengan 4004 memiliki 100 kali lipat lebih banyak dibandingkan dengan 4004.

Kemudian pada tahun 1989, Intel486™ DX CPU Microprocessor merupakan prosesor pertama dengan lebih 1 juta transistor. Sebelumnya sudah dikenal generasi XT i186, dilanjutkan dengan generasi AT i286, i386 hingga i486. i486 dengan chip 32 bit ini bekerja dengan clock sampai 100MHz. i486 dipasarkan hingga pertengahan tahun 90-an.

Processor yang pertama kali memudahkan berbagai aplikasi yang tadinya harus mengetikkan command-command menjadi hanya sebuah klik saja, dan mempunyai fungsi komplek matematika sehingga memperkecil beban kerja pada processor.

c.    Pentium I



Lanjut masuk ke processor Intel Pentium series pada tahun 1993, Intel® Pentium® Processor yang lebih dikenal dengan Pentium I dengan lebih dari 3 juta transistor.

Chip ini menyimpan sebuah bug.

Pentium berjalan dengan kesalahan proses yang paling parah sepanjang sejarah. Processor generasi baru yang mampu menangani berbagai jenis data seperti suara, bunyi, tulisan tangan, dan foto.

Kemudian pada tahun 1995, Intel® Pentium® Pro Processor yang dirancang untuk digunakan pada aplikasi server dan workstation, yang dibuat untuk memproses data secara cepat, processor ini mempunyai 5,5 jt transistor yang tertanam.

d.   Pentium II



Pada tahun 1997, Intel® Pentium® II Processor yang merupakan perkembangan berikutnya dengan clock hingga 450 MHz dan menampung sekitar 7,5 juta transistor diintegrasikan dengan chace level 2 (L2).

Processor Pentium II merupakan processor yang menggabungkan Intel MMX yang dirancang secara khusus untuk mengolah data video, audio, dan grafik secara efisien. Terdapat 7.5 juta transistor terintegrasi di dalamnya sehingga dengan processor ini pengguna PC dapat mengolah berbagai data dan menggunakan internet dengan lebih baik.

Tahun 1998 Processor ekonomis Intel® Pentium II Xeon® Processor dengan basis Pentium II tetapi tanpa ketersediaan chace level 2 (L2). Processor ini dikenal dengan Pentium II Celeron. Processor yang dibuat untuk kebutuhan pada aplikasi server. Intel saat itu ingin memenuhi strateginya yang ingin memberikan sebuah processor unik untuk sebuah pasar tertentu.

e.   Pentium III



Pada tahun 1999 lahirlah prosesor dengan slogan “Internet Streaming Extension”. Pentium III didukung dengan 44 juta transistor dan dapat mendukung lebih banyak proses secara paralel. Pada tahun ini juga lahir Processor  Intel® Celeron® yang dikeluarkan sebagai processor yang ditujukan untuk pengguna yang tidak terlalu membutuhkan kinerja processor yang lebih cepat.

Bagi pengguna yang ingin membangun sebuah system computer dengan budget (harga) yang tidak terlalu besar. Processor Intel Celeron ini memiliki bentuk dan formfactor yang sama dengan processor Intel jenis Pentium, tetapi hanya dengan instruksi-instruksi yang lebih sedikit, L2 cache-nya lebih kecil, kecepatan (clock speed) yang lebih lambat, dan harga yang lebih murah daripada processor Intel jenis Pentium.

Dengan keluarnya processor Celeron ini maka Intel kembali memberikan sebuah processor untuk sebuah pasaran tertentu. Kemudian muncul lagi pengembangan dari Intel® Pentium® III Processor yang diberi tambahan 70 instruksi baru yang secara dramatis memperkaya kemampuan pencitraan tingkat tinggi, tiga dimensi, audio streaming, dan aplikasi-aplikasi video serta pengenalan suara. 

Intel® Pentium® III Xeon® Processor merupakan produk terakhir dari Pentium III series. Intel kembali merambah pasaran server dan workstation dengan mengeluarkan seri Xeon tetapi jenis Pentium III yang mempunyai 70 perintah SIMD. Keunggulan processor ini adalah ia dapat mempercepat pengolahan informasi dari system bus ke processor , yang juga mendongkrak performa secara signifikan. Processor ini juga dirancang untuk dipadukan dengan processor lain yang sejenis.

f.     Pentium IV



Kelahiran Intel® Pentium® 4 Processor terjadi pada tahun 2000. Dengan clock 4 kali lebih besar dari Pentium III, Pentium 4 lahir dengan clock hingga 3.8 GHz. Processor ini mampu melaksanakan perintah jauh lebih banyak pada proses yang sama. Varian lain dari Pentium 4 ini adalah Pentium 4 Hyperthreading.

Processor Pentium IV merupakan produk Intel yang kecepatan prosesnya mampu menembus kecepatan hingga 3.06 GHz. Pertama kali keluar processor ini berkecepatan 1.5GHz dengan formafactor pin 423, setelah itu intel merubah formfactor processor Intel Pentium 4 menjadi pin 478 yang dimulai dari processor Intel Pentium 4 berkecepatan 1.3 GHz sampai yang terbaru yang saat ini mampu menembus kecepatannya hingga 3.4 GHz.

Pada tahun 2001 Intel kembali merilis Intel® Xeon® Processor untuk kebutuhan server. Processor Intel Pentium 4 Xeon merupakan processor Intel Pentium 4 yang ditujukan khusus untuk berperan sebagai computer server. Processor ini memiliki jumlah pin lebih banyak dari processor Intel Pentium 4 serta dengan memory L2 cache yang lebih besar pula.

g.   Intel Itanium



Pada tahun 2001 juga Processor Intel® Itanium® dilahirkan. Itanium adalah processor pertama berbasis 64 bit yang ditujukan bagi pemakain pada server dan workstation serta pemakai tertentu.

Processor ini sudah dibuat dengan struktur yang benar-benar berbeda dari sebelumnya yang didasarkan pada desain dan teknologi Intel’s Explicitly Parallel Instruction Computing ( EPIC ).

Selanjutnya pada tahun 2002, Intel® Itanium® 2 Processor merupakan generasi berikutnya. Itanium 2 adalah generasi kedua dari keluarga Itanium. Processor 64 bit dengan 221 juta transistor ini mencapai clock maksimum 1 GHz. Processor ini tidak sukses di pasaran, bahkan namanyapun nyaris tidak pernah terdengar.

h.   Intel Pentium M



Processor Intel® Pentium® M Processor yang ditujukan untuk notebook ini dikenal dengan Pentium M tahun 2003. Merupakan processor yang dirampingkan hingga 77 juta transistor. Pentium M dibuat untuk menggantikan Pentium 4 yang boros penggunaan daya pada notebook. Chipset 855, dan Intel® PRO/WIRELESS 2100 adalah komponen dari Intel® Centrino™.

Intel Centrino dibuat untuk memenuhi kebutuhan pasar akan keberadaan sebuah komputer yang mudah dibawa kemana-mana. Lanjut ke tahun 2004, Muncul lagi Intel Pentium M 735/745/755 processors yang dilengkapi dengan chipset 855 dengan fitur baru 2Mb L2 Cache 400MHz system bus dan kecocokan dengan soket processor dengan seri-seri Pentium M sebelumnya.

Masih pada tahun yang sama Intel E7520/E7320 Chipsets lahir. 7320/7520 dapat digunakan untuk dual processor dengan konfigurasi 800MHz FSB, DDR2 400 memory, and PCI Express peripheral interfaces.

i.     Intel Pentium Dual Core



Pada tahun 2005 Penggabungan kinerja Hyperthreading dan penggunaan daya Pentium M, lahir processor DualCore dengan clock maksimal 2 GHz.

Intel Pentium 4 Extreme Edition 3.73GHz sebuah processor yang ditujukan untuk pasar pengguna komputer yang menginginkan sesuatu yang lebih dari komputernya, processor ini menggunakan konfigurasi 3.73GHz frequency, 1.066GHz FSB, EM64T, 2MB L2 cache, dan HyperThreading.

Intel Pentium D 820/830/840 Processor berbasis 64 bit dan disebut dual core karena menggunakan 2 buah inti, dengan konfigurasi 1MB L2 cache pada tiap core, 800MHz FSB, dan bisa beroperasi pada frekuensi 2.8GHz, 3.0GHz, dan 3.2GHz. Pada processor jenis ini juga disertakan dukungan HyperThreading.

j.     Intel Core 2 Duo dan Core 2 Quad



Pada tahun 2006 Penggunaan dan pemasaran generasi DualCore belum habis, setahun kemudian diluncurkan Core2Duo yang mengintegrasikan hampir 300 juta transistor dengan 2 buah core yang bekerja dalam 1 processor mampu bekerja hingga 3.3 GHz. Masih di tahun yang sama Intel Core 2 Quad Q6600 muncul Processor untuk type desktop dan digunakan pada orang yang ingin kekuatan lebih dari komputer yang ia miliki memiliki 2 buah core dengan konfigurasi 2.4GHz dengan 8MB L2 cache (sampai dengan 4MB yang dapat diakses tiap core ), 1.06GHz Front-side bus, dan thermal design power ( TDP ).

Untuk server ditahun yang sama Intel Quad-core Xeon X3210/X3220 diproduksi. Processor yang digunakan untuk tipe server dan memiliki 2 buah core dengan masing-masing memiliki konfigurasi 2.13 dan 2.4GHz, berturut-turut , dengan 8MB L2 cache ( dapat mencapai 4MB yang diakses untuk tiap core ), 1.06GHz Front-side bus, dan thermal design power (TDP).

k.   Intel Core i3



Pada tahun 2009 Processor Intel i Series lahir. Dimulai dari Intel Core i3. Intel Core i3 merupakan varian paling value dibandingkan dua saudaranya yang lain. Processor ini akan mengintegrasikan GPU (Graphics Processing Unit) alias Graphics On-board didalam processornya. Kemampuan grafisnya diklaim sama dengan Intel GMA pada chipset G45. Selain itu Core i3 nantinya menggunakan manufaktur hybrid, inti processor dengan 32nm, sedangkan memory controller/graphics menggunakan 45nm. Code produk Core i3 adalah “Arrandale”.

l.     Intel Core i5



Jika Bloomfield adalah codename untuk Core i7 maka Lynnfield adalah codename untuk Core i5. Core i5 adalah seri value dari Core i7 yang akan berjalan di socket baru Intel yaitu socket LGA-1156.

Kelebihan Core i5 ini adalah ditanamkannya fungsi chipset Northbridge pada inti processor (dikenal dengan nama MCH pada Motherboard). Maka motherboard Core i5 yang akan menggunakan chipset Intel P55 (dikelas mainstream) ini akan terlihat lowong tanpa kehadiran chipset northbridge.

Jika Core i7 menggunakan Triple Channel DDR 3, maka di Core i5 hanya menggunakan Dual Channel DDR 3. Penggunaan dayanya juga diturunkan menjadi 95 Watt. Chipset P55 ini mendukung Triple Graphic Cards (3x) dengan 1×16 PCI-E slot dan 2×8 PCI-E slot. Pada Core i5 cache tetap sama, yaitu 8 MB L3 cache.

Intel juga meluncurkan Clarksfield, yaitu Core i5 versi mobile yang ditujukan untuk notebook. Socket yang akan digunakan adalah mPGA-989 dan membutuhkan daya yang terbilang cukup kecil yaitu sebesar 45-55 Watt.

m.  Intel Core i7



Core i7 sendiri merupakan processor pertama dengan teknologi “Nehalem”. Nehalem menggunakan platform baru yang betul-betul berbeda dengan generasi sebelumnya. Salah satunya adalah mengintegrasikan chipset MCH langsung di processor, bukan motherboard. Nehalem juga mengganti fungsi FSB menjadi QPI (Quick Path Interconnect) yang lebih revolusioner.

n.   Intel Sandy Bridge



Pada tahun 2011, lahir generasi 2 dari intel core i 2000 series. Intel core i3, i5 dan i7 Sany Bridge Series. Keunggulan processor ini dari generasi sebelumnya adalah, graphic lebih maknyus, clock speed yang lebih tinggi dan TDP yang lebih rendah. Processor Seri ini menggunakan Chipset dengan socket LGA 1155.

Processor unggulan Sandy Bridge Series adalah Intel Core i7 2700K. Procie ini memiliki Quard Core Processor (4 Core), Clock Speed 3.5 GHz dan turbo clock speed 3.9 GHz, Graphic Clock mode standar mencapai 850 MHz dan pada moder turbo turbo mampu mencapai kecepatan 1350 MHz, Chace dibekali 8 MB, TDP 95 W, Diproduksi pada 2011-10-24, dengan harga $332, menggunakan socket LGA 1155 DMI 2.0, PCIe 2.0, memory Up to dual channel  DDR3-1333.

o.   Intel Ivy Bridge



Pada tahun 2012, muncul lagi intel generasi 3 yaitu Intel Core i 3000 Series dengan chipset LGA 1155 dan LGA 2011. Kenggullan dari generasi sabelumnya adalah peningkatan teknology menjadi lebih tinggi, graphic yang menggunakan seri terbaru yang tentu saja lebih cepat, clock speed yang ditingkatkan dan pengurangan TDP artinya penggunaan menjadi lebih rendah (hanya berlaku procie yang memiliki spek yang sama).

Produk unggulan pada seri ini adalah Core i7 Extreme 3970X, memiliki 6 core (12 thread), clock 3.5 GHz dan turbo4.0 GHz, Chace 15 MB, TDP 150 W, Diproduksi pada 2012-11-12, dengan harga $999, menggunakan socket terbaru yaitu LGA 2011, DMI 2.0, tentu saja sudah mendukung PCIe 2.0 untuk keperluan graphic tambahan, Memory Up to quad channel DDR3-1600.

p.   Intel Haswell



Tahun 2013, Intel kembali merilis processor berteknologi tinggi. Intel generasi 4 core i 4000 series. Kenggullan dari generasi sabelumnya adalah peningkatan teknolog, graphic, clock speed dan pengurangan TDP.

Produk unggulan pada seri ini adalah Core i7 Extreme 4960X, memiliki 6 core (12 thread), dengan clock speed 3.6 GHz dan turbo 4.0 GHz, chace 15 MB, TDP 130 W, Diproduksi 10 September 2013, harga $999, LGA 2011, DMI 2.0 PCIe 3.0, Memory Up to quad channel DDR3-1866.

Untuk fitur, procie seri ini jauh meninggalkan seri sebelumnya. Sebut saja, Haswell series sudah mendukung PCIe veri 3.0. Sedangkan untuk memory, Haswell series mampu di pasangkan dengan memory dengan kecepatan hingga 1866 mhz.

q.   Intel Haswell X99



Tahun 2014 Intel kembali menggebrak dunia komputer dengan meluncurkan processor Intel Core i7 Extreme 5960X (Haswell 5000 series). Tidak tanggung-tanggung procie ini memiliki 8 buah core dan 16 thread core. Menggunakan Socket X99 LGA 2011-13 dan support dengan memory DDR4 terbaru dipadu dengan Nvidia GTX Titan Z.



3.   Macam-macam Komputasi Modern

Komputasi modern terbagi tiga macam, yaitu komputasi mobile (bergerak), komputasi grid, dan komputasi cloud (awan). Penjelasan lebih lanjut dari jenis-jenis komputasi modern sebagai berikut:

a.   Mobile Computing



Mobile computing atau komputasi bergerak memiliki beberapa penjelasan, salah satunya komputasi bergerak merupakan kemajuan teknologi komputer sehingga dapat berkomunikasi menggunakan jaringan tanpa menggunakan kabel dan mudah dibawa atau berpindah tempat, tetapi berbeda dengan komputasi nirkabel. Contoh dari perangkat komputasi bergerak seperti GPS, juga tipe dari komputasi bergerak seperti smart phone, dan lain sebagainya.

b.    Grid Computing



Komputasi grid menggunakan komputer yang terpisah oleh geografis, didistibusikan dan terhubung oleh jaringan untuk menyelasaikan masalah komputasi skala besar.

c.    Cloud Computing



Komputasi cloud merupakan gaya komputasi yang terukur dinamis dan sumber daya virtual yang sering menyediakan layanan melalui internet. Komputasi cloud menggambarkan pelengkap baru, konsumsi dan layanan IT berbasis model dalam internet, dan biasanya melibatkan ketentuan dari keterukuran dinamis dan sumber daya virtual yang sering menyediakan layanan melalui internet.

4.   Kesimpulan

Perkembangan komputer dari masa ke masa selalu mengalami peningkatan. Pada awalnya komputer bukanlah alat yang diciptakan untuk berbagai kegunaan seperti yang kita amati pada zaman sekarang. Dulu komputer diciptakan hanya sebagai alat untuk mempermudah dalam penghitungan atau lebih mudahnya sebagai mesin hitung matematika. Tetapi seiring dengan perkembangan zaman komputer ini terus berevolusi menjadi mesin serba guna khususnya pada bidang industri dan penelitian.

Diantara teknologi informasi yang hampir disetiap tempat kita temukan komputer. Sekarang komputer sangat berkembang pesat hampir setiap tahun komputer selalu mengalami perkembangan. Orang bisa menggunakan komputer dimana saja dirumah, dikafe, disekolah, dan ditempat lainnya. Sedangkan model dan design dari komputer itu sendiri juga mengalami perkembangan. Dulu apabila orang ingin menggunakan komputer maka hanya bisa di kantor atau di rumah, kalau sekarang mereka bisa menggunakan komputer tersebut dimana saja yang mereka inginkan.



Daftar Pustaka











 

Anggi Ed'driana Putri~ Copyright © 2012 Design by Ipietoon Blogger Template